Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Science ; 374(6571): 1127-1133, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: covidwho-1723460

RESUMEN

Humans differ in their susceptibility to infectious disease, partly owing to variation in the immune response after infection. We used single-cell RNA sequencing to quantify variation in the response to influenza infection in peripheral blood mononuclear cells from European- and African-ancestry males. Genetic ancestry effects are common but highly cell type specific. Higher levels of European ancestry are associated with increased type I interferon pathway activity in early infection, which predicts reduced viral titers at later time points. Substantial population-associated variation is explained by cis-expression quantitative trait loci that are differentiated by genetic ancestry. Furthermore, genetic ancestry­associated genes are enriched among genes correlated with COVID-19 disease severity, suggesting that the early immune response contributes to ancestry-associated differences for multiple viral infection outcomes.


Asunto(s)
Negro o Afroamericano/genética , COVID-19/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/genética , Gripe Humana/inmunología , Leucocitos Mononucleares/virología , Población Blanca/genética , Adulto , Anciano , COVID-19/inmunología , COVID-19/fisiopatología , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Variación Genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/fisiología , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Leucocitos Mononucleares/inmunología , Masculino , Persona de Mediana Edad , Sitios de Carácter Cuantitativo , Índice de Severidad de la Enfermedad , Análisis de la Célula Individual , Transcripción Genética , Carga Viral , Adulto Joven
2.
Viruses ; 14(2)2022 02 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1687057

RESUMEN

The types of interactions between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory viruses are not well-characterized due to the low number of co-infection cases described since the onset of the pandemic. We have evaluated the interactions between SARS-CoV-2 (D614G mutant) and influenza A(H1N1)pdm09 or respiratory syncytial virus (RSV) in the nasal human airway epithelium (HAE) infected simultaneously or sequentially (24 h apart) with virus combinations. The replication kinetics of each virus were determined by RT-qPCR at different post-infection times. Our results showed that during simultaneous infection, SARS-CoV-2 interferes with RSV-A2 but not with A(H1N1)pdm09 replication. The prior infection of nasal HAE with SARS-CoV-2 reduces the replication kinetics of both respiratory viruses. SARS-CoV-2 replication is decreased by a prior infection with A(H1N1)pdm09 but not with RSV-A2. The pretreatment of nasal HAE with BX795, a TANK-binding kinase 1 inhibitor, partially alleviates the reduced replication of SARS-CoV-2 or influenza A(H1N1)pdm09 during sequential infection with both virus combinations. Thus, a prior infection of nasal HAE with SARS-CoV-2 interferes with the replication kinetics of A(H1N1)pdm09 and RSV-A2, whereas only A(H1N1)pdm09 reduces the subsequent infection with SARS-CoV-2. The mechanism involved in the viral interference between SARS-CoV-2 and A(H1N1)pdm09 is mediated by the production of interferon.


Asunto(s)
Células Epiteliales/virología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Nasofaringe/citología , Virus Sincitial Respiratorio Humano/fisiología , SARS-CoV-2/fisiología , Interferencia Viral , Replicación Viral , Coinfección , Humanos , Interacciones Microbianas , Nasofaringe/virología
3.
Cells ; 11(3)2022 01 30.
Artículo en Inglés | MEDLINE | ID: covidwho-1667057

RESUMEN

The global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still ongoing, as is research on the molecular mechanisms underlying cellular infection by coronaviruses, with the hope of developing therapeutic agents against this pandemic. Other important respiratory viruses such as 2009 pandemic H1N1 and H7N9 avian influenza virus (AIV), influenza A viruses, are also responsible for a possible outbreak due to their respiratory susceptibility. However, the interaction of these viruses with host cells and the regulation of post-transcriptional genes remains unclear. In this study, we detected and analyzed the comparative transcriptome profiling of SARS-CoV-2, panH1N1 (A/California/07/2009), and H7N9 (A/Shanghai/1/2013) infected cells. The results showed that the commonly upregulated genes among the three groups were mainly involved in autophagy, pertussis, and tuberculosis, which indicated that autophagy plays an important role in viral pathogenicity. There are three groups of commonly downregulated genes involved in metabolic pathways. Notably, unlike panH1N1 and H7N9, SARS-CoV-2 infection can inhibit the m-TOR pathway and activate the p53 signaling pathway, which may be responsible for unique autophagy induction and cell apoptosis. Particularly, upregulated expression of IRF1 was found in SARS-CoV-2, panH1N1, and H7N9 infection. Further analysis showed SARS-CoV-2, panH1N1, and H7N9 infection-induced upregulation of lncRNA-34087.27 could serve as a competitive endogenous RNA to stabilize IRF1 mRNA by competitively binding with miR-302b-3p. This study provides new insights into the molecular mechanisms of influenza A virus and SARS-CoV-2 infection.


Asunto(s)
COVID-19/inmunología , Inmunidad/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H7N9 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , ARN/inmunología , Transcriptoma/inmunología , Células A549 , Animales , COVID-19/genética , COVID-19/virología , Células HEK293 , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad/genética , Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H7N9 del Virus de la Influenza A/fisiología , Gripe Humana/genética , Gripe Humana/virología , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/inmunología , Factor 1 Regulador del Interferón/metabolismo , MicroARNs/genética , MicroARNs/inmunología , MicroARNs/metabolismo , Pandemias/prevención & control , ARN/genética , ARN/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/inmunología , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/inmunología , ARN Mensajero/metabolismo , RNA-Seq/métodos , SARS-CoV-2/fisiología , Transducción de Señal/genética , Transducción de Señal/inmunología , Transcriptoma/genética
4.
PLoS Negl Trop Dis ; 15(11): e0009997, 2021 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1542166

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mimics the influenza A (H1N1) virus in terms of clinical presentation, transmission mechanism, and seasonal coincidence. Comprehensive data for the clinical severity of adult patients co-infected by both H1N1 and SARS-CoV-2, and, particularly, the relationship with PCR cycle threshold (Ct) values are not yet available. All participants in this study were tested for H1N1 and SARS-CoV-2 simultaneously at admission. Demographic, clinical, treatment, and laboratory data were extracted from electronic medical records and compared among adults hospitalized for H1N1 infection, SARS-CoV-2 infection and co-infection with both viruses. Ct values for viral RNA detection were further compared within SARS-CoV-2 and co-infection groups. Score on seven-category ordinal scale of clinical status at day 7 and day 14 were assessed. Among patients with monoinfection, H1N1 infection had higher frequency of onset symptoms but lower incidence of adverse events during hospitalization than SAR-CoV-2 infection (P < 0.05). Co-infection had an increased odds of acute kidney injury, acute heart failure, secondary bacterial infections, multilobar infiltrates and admittance to ICU than monoinfection. Score on seven-category scale at day 7 and day 14 was higher in patients with coinfection than patients with SAR-CoV-2 monoinfection (P<0.05). Co-infected patients had lower initial Ct values (referring to higher viral load) (median 32) than patients with SAR-CoV-2 monoinfection (median 36). Among co-infected patients, low Ct values were significantly and positively correlated with acute kidney injury and ARDS (P = 0.03 and 0.02, respectively). Co-infection by SARS-CoV-2 and H1N1 caused more severe disease than monoinfection by either virus in adult inpatients. Early Ct value could provide clues for the later trajectory of the co-infection. Multiplex molecular diagnostics for both viruses and early assessment of SAR-CoV-2 Ct values are recommended to achieve optimal treatment for improved clinical outcome.


Asunto(s)
COVID-19/virología , Coinfección/virología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/virología , SARS-CoV-2/fisiología , Adolescente , Adulto , COVID-19/epidemiología , China/epidemiología , Femenino , Hospitalización , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/epidemiología , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , SARS-CoV-2/genética , Carga Viral , Adulto Joven
5.
Cells ; 10(11)2021 11 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1512135

RESUMEN

The bronchial vascular endothelial network plays important roles in pulmonary pathology during respiratory viral infections, including respiratory syncytial virus (RSV), influenza A(H1N1) and importantly SARS-Cov-2. All of these infections can be severe and even lethal in patients with underlying risk factors.A major obstacle in disease prevention is the lack of appropriate efficacious vaccine(s) due to continuous changes in the encoding capacity of the viral genome, exuberant responsiveness of the host immune system and lack of effective antiviral drugs. Current management of these severe respiratory viral infections is limited to supportive clinical care. The primary cause of morbidity and mortality is respiratory failure, partially due to endothelial pulmonary complications, including edema. The latter is induced by the loss of alveolar epithelium integrity and by pathological changes in the endothelial vascular network that regulates blood flow, blood fluidity, exchange of fluids, electrolytes, various macromolecules and responses to signals triggered by oxygenation, and controls trafficking of leukocyte immune cells. This overview outlines the latest understanding of the implications of pulmonary vascular endothelium involvement in respiratory distress syndrome secondary to viral infections. In addition, the roles of infection-induced cytokines, growth factors, and epigenetic reprogramming in endothelial permeability, as well as emerging treatment options to decrease disease burden, are discussed.


Asunto(s)
Células Endoteliales/patología , Estrés Oxidativo , Síndrome de Dificultad Respiratoria/patología , Virosis/patología , Epigénesis Genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/fisiología , Edema Pulmonar/genética , Edema Pulmonar/patología , Edema Pulmonar/virología , Síndrome de Dificultad Respiratoria/genética , Síndrome de Dificultad Respiratoria/virología , Virus Sincitiales Respiratorios/patogenicidad , SARS-CoV-2/patogenicidad , Virosis/genética , Virosis/virología
6.
Gene ; 801: 145854, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: covidwho-1313122

RESUMEN

OBJECTIVE: Both COVID-19 and influenza are viral respiratory tract infections and the epidemics of viral respiratory tract infections remain highly prevalent with lethal consequences in susceptible individuals. Expression of ICAM-1 on vascular endothelium recruits leukocytes which initiates inflammation. IL-6 induces ICAM-1. Both ICAM-1 and IL-6 can be enhanced in influenza virus infection and COVID-19 patients. Besides initiation of virus entry host cells, whether HA alone, instead of whole virus, of influenza has the effects on expression of ICAM-1 and IL-6 in vascular endothelium with injury in the lungs, remains to be demonstrated. METHODS: RT-qPCR and Western blot as well as histopathologic examination were used to examine mRNA and protein of ICAM-1 and IL-6 as well as pathological injury in the lung tissues, respectively. RESULTS: After incubation of the Human Umbilical Vein Endothelial Cells (HUVECs) with HA of H1N1 for 24 h, the mRNA and protein of ICAM-1 and IL-6 in HUVECs were increased in group of 5 µg/ml concentration with statistical significance (p < 0.05). Pathological injury in lung tissues of the mice was shown 12 h after tail intravenous injection with 100 µl of HA (50 µg/ml and 100 µg/ml in normal saline), including widened alveolar spaces with angiotelectasis in alveolar wall, alveolar luminal and interstitial inflammatory infiltrates, alveolar luminal erythrocyte effusion. CONCLUSIONS: HA alone, instead of whole H1N1 virus, induced more expression of ICAM-1 and IL-6, two molecules involving in pathological and inflammatory responses, in HUVECs and pathological injury in lung tissues of the mice. This knowledge provides a new HA-targeted potential direction for prevention and treatment of disease related to H1N1 infection.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/fisiología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucina-6/metabolismo , Pulmón/patología , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana , Humanos , Pulmón/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
PLoS Pathog ; 17(7): e1009381, 2021 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1291654

RESUMEN

Clearance of viral infections, such as SARS-CoV-2 and influenza A virus (IAV), must be fine-tuned to eliminate the pathogen without causing immunopathology. As such, an aggressive initial innate immune response favors the host in contrast to a detrimental prolonged inflammation. The complement pathway bridges innate and adaptive immune system and contributes to the response by directly clearing pathogens or infected cells, as well as recruiting proinflammatory immune cells and regulating inflammation. However, the impact of modulating complement activation in viral infections is still unclear. In this work, we targeted the complement decay-accelerating factor (DAF/CD55), a surface protein that protects cells from non-specific complement attack, and analyzed its role in IAV infections. We found that DAF modulates IAV infection in vivo, via an interplay with the antigenic viral proteins hemagglutinin (HA) and neuraminidase (NA), in a strain specific manner. Our results reveal that, contrary to what could be expected, DAF potentiates complement activation, increasing the recruitment of neutrophils, monocytes and T cells. We also show that viral NA acts on the heavily sialylated DAF and propose that the NA-dependent DAF removal of sialic acids exacerbates complement activation, leading to lung immunopathology. Remarkably, this mechanism has no impact on viral loads, but rather on the host resilience to infection, and may have direct implications in zoonotic influenza transmissions.


Asunto(s)
Antígenos CD55/fisiología , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Pulmón/inmunología , Viremia/inmunología , Animales , Líquido del Lavado Bronquioalveolar/inmunología , Antígenos CD55/química , Antígenos CD55/deficiencia , Quimiotaxis de Leucocito , Activación de Complemento , Glicoproteínas Hemaglutininas del Virus de la Influenza/fisiología , Adaptación al Huésped , Especificidad del Huésped , Interacciones Huésped-Patógeno , Subtipo H1N1 del Virus de la Influenza A/enzimología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H1N1 del Virus de la Influenza A/fisiología , Interferón gamma/análisis , Pulmón/patología , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Ácido N-Acetilneuramínico , Neuraminidasa/fisiología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/patología , Carga Viral , Proteínas Virales/fisiología , Virulencia , Replicación Viral , Pérdida de Peso
8.
Pharmacol Res Perspect ; 9(4): e00798, 2021 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1269136

RESUMEN

Therapeutic regimens for the COVID-19 pandemics remain unmet. In this line, repurposing of existing drugs against known or predicted SARS-CoV-2 protein actions have been advanced, while natural products have also been tested. Here, we propose that p-cymene, a natural monoterpene, can act as a potential novel agent for the treatment of SARS-CoV-2-induced COVID-19 and other RNA-virus-induced diseases (influenza, rabies, Ebola). We show by extensive molecular simulations that SARS-CoV-2 C-terminal structured domain contains a nuclear localization signal (NLS), like SARS-CoV, on which p-cymene binds with low micromolar affinity, impairing nuclear translocation of this protein and inhibiting viral replication, as verified by preliminary in vitro experiments. A similar mechanism may occur in other RNA-viruses (influenza, rabies and Ebola), also verified in vitro for influenza, by interaction of p-cymene with viral nucleoproteins, and structural modification of their NLS site, weakening its interaction with importin A. This common mechanism of action renders therefore p-cymene as a possible antiviral, alone, or in combination with other agents, in a broad spectrum of RNA viruses, from SARS-CoV-2 to influenza A infections.


Asunto(s)
Antivirales/farmacología , Cimenos/farmacología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Proteínas de la Nucleocápside/metabolismo , SARS-CoV-2/fisiología , Animales , Antivirales/química , Núcleo Celular/metabolismo , Núcleo Celular/virología , Chlorocebus aethiops , Cimenos/química , Perros , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Células de Riñón Canino Madin Darby , Modelos Moleculares , Simulación de Dinámica Molecular , Señales de Localización Nuclear , Proteínas de la Nucleocápside/química , Conformación Proteica , Dominios Proteicos , Transporte de Proteínas , SARS-CoV-2/efectos de los fármacos , Células Vero , Replicación Viral/efectos de los fármacos
9.
Sci Rep ; 11(1): 8692, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1199310

RESUMEN

A metal nanoparticle composite, namely TPNT1, which contains Au-NP (1 ppm), Ag-NP (5 ppm), ZnO-NP (60 ppm) and ClO2 (42.5 ppm) in aqueous solution was prepared and characterized by spectroscopy, transmission electron microscopy, dynamic light scattering analysis and potentiometric titration. Based on the in vitro cell-based assay, TPNT1 inhibited six major clades of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with effective concentration within the range to be used as food additives. TPNT1 was shown to block viral entry by inhibiting the binding of SARS-CoV-2 spike proteins to the angiotensin-converting enzyme 2 (ACE2) receptor and to interfere with the syncytium formation. In addition, TPNT1 also effectively reduced the cytopathic effects induced by human (H1N1) and avian (H5N1) influenza viruses, including the wild-type and oseltamivir-resistant virus isolates. Together with previously demonstrated efficacy as antimicrobials, TPNT1 can block viral entry and inhibit or prevent viral infection to provide prophylactic effects against both SARS-CoV-2 and opportunistic infections.


Asunto(s)
Oro/farmacología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H5N1 del Virus de la Influenza A/fisiología , SARS-CoV-2/fisiología , Plata/farmacología , Óxido de Zinc/farmacología , Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/química , Antivirales/farmacología , Farmacorresistencia Viral/efectos de los fármacos , Aditivos Alimentarios/farmacología , Oro/química , Células HEK293 , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Nanopartículas del Metal/química , Nanocompuestos/química , Oseltamivir/farmacología , Tamaño de la Partícula , Unión Proteica/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Plata/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos , Óxido de Zinc/química
10.
Elife ; 102021 04 16.
Artículo en Inglés | MEDLINE | ID: covidwho-1190616

RESUMEN

Background: Which virological factors mediate overdispersion in the transmissibility of emerging viruses remains a long-standing question in infectious disease epidemiology. Methods: Here, we use systematic review to develop a comprehensive dataset of respiratory viral loads (rVLs) of SARS-CoV-2, SARS-CoV-1 and influenza A(H1N1)pdm09. We then comparatively meta-analyze the data and model individual infectiousness by shedding viable virus via respiratory droplets and aerosols. Results: The analyses indicate heterogeneity in rVL as an intrinsic virological factor facilitating greater overdispersion for SARS-CoV-2 in the COVID-19 pandemic than A(H1N1)pdm09 in the 2009 influenza pandemic. For COVID-19, case heterogeneity remains broad throughout the infectious period, including for pediatric and asymptomatic infections. Hence, many COVID-19 cases inherently present minimal transmission risk, whereas highly infectious individuals shed tens to thousands of SARS-CoV-2 virions/min via droplets and aerosols while breathing, talking and singing. Coughing increases the contagiousness, especially in close contact, of symptomatic cases relative to asymptomatic ones. Infectiousness tends to be elevated between 1 and 5 days post-symptom onset. Conclusions: Intrinsic case variation in rVL facilitates overdispersion in the transmissibility of emerging respiratory viruses. Our findings present considerations for disease control in the COVID-19 pandemic as well as future outbreaks of novel viruses. Funding: Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant program, NSERC Senior Industrial Research Chair program and the Toronto COVID-19 Action Fund.


To understand how viruses spread scientists look at two things. One is ­ on average ­ how many other people each infected person spreads the virus to. The other is how much variability there is in the number of people each person with the virus infects. Some viruses like the 2009 influenza H1N1, a new strain of influenza that caused a pandemic beginning in 2009, spread pretty uniformly, with many people with the virus infecting around two other people. Other viruses like SARS-CoV-2, the one that causes COVID-19, are more variable. About 10 to 20% of people with COVID-19 cause 80% of subsequent infections ­ which may lead to so-called superspreading events ­ while 60-75% of people with COVID-19 infect no one else. Learning more about these differences can help public health officials create better ways to curb the spread of the virus. Chen et al. show that differences in the concentration of virus particles in the respiratory tract may help to explain why superspreaders play such a big role in transmitting SARS-CoV-2, but not the 2009 influenza H1N1 virus. Chen et al. reviewed and extracted data from studies that have collected how much virus is present in people infected with either SARS-CoV-2, a similar virus called SARS-CoV-1 that caused the SARS outbreak in 2003, or with 2009 influenza H1N1. Chen et al. found that as the variability in the concentration of the virus in the airways increased, so did the variability in the number of people each person with the virus infects. Chen et al. further used mathematical models to estimate how many virus particles individuals with each infection would expel via droplets or aerosols, based on the differences in virus concentrations from their analyses. The models showed that most people with COVID-19 infect no one because they expel little ­ if any ­ infectious SARS-CoV-2 when they talk, breathe, sing or cough. Highly infectious individuals on the other hand have high concentrations of the virus in their airways, particularly the first few days after developing symptoms, and can expel tens to thousands of infectious virus particles per minute. By contrast, a greater proportion of people with 2009 influenza H1N1 were potentially infectious but tended to expel relatively little infectious virus when the talk, sing, breathe or cough. These results help explain why superspreaders play such a key role in the ongoing pandemic. This information suggests that to stop this virus from spreading it is important to limit crowd sizes, shorten the duration of visits or gatherings, maintain social distancing, talk in low volumes around others, wear masks, and hold gatherings in well-ventilated settings. In addition, contact tracing can prioritize the contacts of people with high concentrations of virus in their airways.


Asunto(s)
Aerosoles , COVID-19/transmisión , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/transmisión , SARS-CoV-2/fisiología , Síndrome Respiratorio Agudo Grave/transmisión , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Esparcimiento de Virus , Transmisión de Enfermedad Infecciosa , Humanos , Carga Viral
11.
Commun Biol ; 4(1): 480, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: covidwho-1182874

RESUMEN

The relationship between gut microbes and COVID-19 or H1N1 infections is not fully understood. Here, we compared the gut mycobiota of 67 COVID-19 patients, 35 H1N1-infected patients and 48 healthy controls (HCs) using internal transcribed spacer (ITS) 3-ITS4 sequencing and analysed their associations with clinical features and the bacterial microbiota. Compared to HCs, the fungal burden was higher. Fungal mycobiota dysbiosis in both COVID-19 and H1N1-infected patients was mainly characterized by the depletion of fungi such as Aspergillus and Penicillium, but several fungi, including Candida glabrata, were enriched in H1N1-infected patients. The gut mycobiota profiles in COVID-19 patients with mild and severe symptoms were similar. Hospitalization had no apparent additional effects. In COVID-19 patients, Mucoromycota was positively correlated with Fusicatenibacter, Aspergillus niger was positively correlated with diarrhoea, and Penicillium citrinum was negatively correlated with C-reactive protein (CRP). In H1N1-infected patients, Aspergillus penicilloides was positively correlated with Lachnospiraceae members, Aspergillus was positively correlated with CRP, and Mucoromycota was negatively correlated with procalcitonin. Therefore, gut mycobiota dysbiosis occurs in both COVID-19 patients and H1N1-infected patients and does not improve until the patients are discharged and no longer require medical attention.


Asunto(s)
COVID-19/fisiopatología , Disbiosis/microbiología , Microbioma Gastrointestinal/fisiología , Gripe Humana/fisiopatología , Adulto , Anciano , Bacterias/clasificación , Bacterias/genética , COVID-19/virología , Heces/microbiología , Femenino , Hongos/clasificación , Hongos/genética , Microbioma Gastrointestinal/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/virología , Masculino , Persona de Mediana Edad , SARS-CoV-2/fisiología , Análisis de Secuencia de ADN/métodos
12.
Front Immunol ; 12: 633297, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1133913

RESUMEN

The C-X-C motif chemokine ligand 17 (CXCL17) is chemotactic for myeloid cells, exhibits bactericidal activity, and exerts anti-viral functions. This chemokine is constitutively expressed in the respiratory tract, suggesting a role in lung defenses. However, little is known about the participation of CXCL17 against relevant respiratory pathogens in humans. Here, we evaluated the serum levels and lung tissue expression pattern of CXCL17 in a cohort of patients with severe pandemic influenza A(H1N1) from Mexico City. Peripheral blood samples obtained on admission and seven days after hospitalization were processed for determinations of serum CXCL17 levels by enzyme-linked immunosorbent assay (ELISA). The expression of CXCL17 was assessed by immunohistochemistry (IHQ) in lung autopsy specimens from patients that succumbed to the disease. Serum CXCL17 levels were also analyzed in two additional comparative cohorts of coronavirus disease 2019 (COVID-19) and pulmonary tuberculosis (TB) patients. Additionally, the expression of CXCL17 was tested in lung autopsy specimens from COVID-19 patients. A total of 122 patients were enrolled in the study, from which 68 had pandemic influenza A(H1N1), 24 had COVID-19, and 30 with PTB. CXCL17 was detected in post-mortem lung specimens from patients that died of pandemic influenza A(H1N1) and COVID-19. Interestingly, serum levels of CXCL17 were increased only in patients with pandemic influenza A(H1N1), but not COVID-19 and PTB. CXCL17 not only differentiated pandemic influenza A(H1N1) from other respiratory infections but showed prognostic value for influenza-associated mortality and renal failure in machine-learning algorithms and regression analyses. Using cell culture assays, we also identified that human alveolar A549 cells and peripheral blood monocyte-derived macrophages increase their CXCL17 production capacity after influenza A(H1N1) pdm09 virus infection. Our results for the first time demonstrate an induction of CXCL17 specifically during pandemic influenza A(H1N1), but not COVID-19 and PTB in humans. These findings could be of great utility to differentiate influenza and COVID-19 and to predict poor prognosis specially at settings of high incidence of pandemic A(H1N1). Future studies on the role of CXCL17 not only in severe pandemic influenza, but also in seasonal influenza, COVID-19, and PTB are required to validate our results.


Asunto(s)
Biomarcadores/metabolismo , Quimiocinas CXC/metabolismo , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/diagnóstico , Pulmón/metabolismo , Mycobacterium tuberculosis/fisiología , SARS-CoV-2/fisiología , Adulto , Anciano , COVID-19/diagnóstico , COVID-19/mortalidad , Quimiocinas CXC/genética , Quimiocinas CXC/inmunología , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Humanos , Gripe Humana/mortalidad , Pulmón/patología , Masculino , México , Persona de Mediana Edad , Pandemias , Evaluación del Resultado de la Atención al Paciente , Pronóstico , Análisis de Supervivencia , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/mortalidad , Adulto Joven
13.
FASEB J ; 35(2): e21358, 2021 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1062891

RESUMEN

Treatment of respiratory viral infections remains a global health concern, mainly due to the inefficacy of available drugs. Therefore, the discovery of novel antiviral compounds is needed; in this context, antimicrobial peptides (AMPs) like temporins hold great promise. Here, we discovered that the harmless temporin G (TG) significantly inhibited the early life-cycle phases of influenza virus. The in vitro hemagglutinating test revealed the existence of TG interaction with the viral hemagglutinin (HA) protein. Furthermore, the hemolysis inhibition assay and the molecular docking studies confirmed a TG/HA complex formation at the level of the conserved hydrophobic stem groove of HA. Remarkably, these findings highlight the ability of TG to block the conformational rearrangements of HA2 subunit, which are essential for the viral envelope fusion with intracellular endocytic vesicles, thereby neutralizing the virus entry into the host cell. In comparison, in the case of parainfluenza virus, which penetrates host cells upon a membrane-fusion process, addition of TG to infected cells provoked ~1.2 log reduction of viral titer released in the supernatant. Nevertheless, at the same condition, an immunofluorescent assay showed that the expression of viral hemagglutinin/neuraminidase protein was not significantly reduced. This suggested a peptide-mediated block of some late steps of viral replication and therefore the impairment of the extracellular release of viral particles. Overall, our results are the first demonstration of the ability of an AMP to interfere with the replication of respiratory viruses with a different mechanism of cell entry and will open a new avenue for the development of novel therapeutic approaches against a large variety of respiratory viruses, including the recent SARS-CoV2.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Antivirales/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Virus de la Parainfluenza 1 Humana/efectos de los fármacos , Células A549 , Animales , Péptidos Catiónicos Antimicrobianos/química , Antivirales/química , Sitios de Unión , Perros , Proteína HN/química , Proteína HN/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Subtipo H1N1 del Virus de la Influenza A/fisiología , Células de Riñón Canino Madin Darby , Simulación del Acoplamiento Molecular , Virus de la Parainfluenza 1 Humana/fisiología , Unión Proteica , Internalización del Virus , Replicación Viral
14.
Viruses ; 13(2)2021 02 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1060766

RESUMEN

The long-term control strategy of SARS-CoV-2 and other major respiratory viruses needs to include antivirals to treat acute infections, in addition to the judicious use of effective vaccines. Whilst COVID-19 vaccines are being rolled out for mass vaccination, the modest number of antivirals in use or development for any disease bears testament to the challenges of antiviral development. We recently showed that non-cytotoxic levels of thapsigargin (TG), an inhibitor of the sarcoplasmic/endoplasmic reticulum (ER) Ca2+ ATPase pump, induces a potent host innate immune antiviral response that blocks influenza A virus replication. Here we show that TG is also highly effective in blocking the replication of respiratory syncytial virus (RSV), common cold coronavirus OC43, SARS-CoV-2 and influenza A virus in immortalized or primary human cells. TG's antiviral performance was significantly better than remdesivir and ribavirin in their respective inhibition of OC43 and RSV. Notably, TG was just as inhibitory to coronaviruses (OC43 and SARS-CoV-2) and influenza viruses (USSR H1N1 and pdm 2009 H1N1) in separate infections as in co-infections. Post-infection oral gavage of acid-stable TG protected mice against a lethal influenza virus challenge. Together with its ability to inhibit the different viruses before or during active infection, and with an antiviral duration of at least 48 h post-TG exposure, we propose that TG (or its derivatives) is a promising broad-spectrum inhibitor against SARS-CoV-2, OC43, RSV and influenza virus.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Coronavirus Humano OC43/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Virus Sincitial Respiratorio Humano/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Tapsigargina/farmacología , Animales , Antivirales/uso terapéutico , Betacoronavirus/fisiología , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Coronavirus Humano OC43/fisiología , Estrés del Retículo Endoplásmico , Humanos , Subtipo H1N1 del Virus de la Influenza A/fisiología , Ratones , Pruebas de Sensibilidad Microbiana , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/virología , Virus Sincitial Respiratorio Humano/fisiología , Ribavirina/farmacología , SARS-CoV-2/fisiología , Tapsigargina/uso terapéutico , Replicación Viral/efectos de los fármacos
15.
Appl Microbiol Biotechnol ; 105(4): 1421-1434, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: covidwho-1052958

RESUMEN

Similar to the recent COVID-19 pandemic, influenza A virus poses a constant threat to the global community. For the treatment of flu disease, both antivirals and vaccines are available with vaccines the most effective and safest approach. In order to overcome limitations in egg-based vaccine manufacturing, cell culture-based processes have been established. While this production method avoids egg-associated risks in face of pandemics, process intensification using animal suspension cells in high cell density perfusion cultures should allow to further increase manufacturing capacities worldwide. In this work, we demonstrate the development of a perfusion process using Madin-Darby canine kidney (MDCK) suspension cells for influenza A (H1N1) virus production from scale-down shake flask cultivations to laboratory scale stirred tank bioreactors. Shake flask cultivations using semi-perfusion mode enabled high-yield virus harvests (4.25 log10(HAU/100 µL)) from MDCK cells grown up to 41 × 106 cells/mL. Scale-up to bioreactors with an alternating tangential flow (ATF) perfusion system required optimization of pH control and implementation of a temperature shift during the infection phase. Use of a capacitance probe for on-line perfusion control allowed to minimize medium consumption. This contributed to a better process control and a more economical performance while maintaining a maximum virus titer of 4.37 log10(HAU/100 µL) and an infectious virus titer of 1.83 × 1010 virions/mL. Overall, this study clearly demonstrates recent advances in cell culture-based perfusion processes for next-generation high-yield influenza vaccine manufacturing for pandemic preparedness. KEY POINTS: • First MDCK suspension cell-based perfusion process for IAV produciton was established. • "Cell density effect" was overcome and process was intensified by reduction of medium use and automated process control. • The process achieved cell density over 40 × 106 cells/mL and virus yield over 4.37 log10(HAU/100 µL).


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/fisiología , Cultivo de Virus/métodos , Replicación Viral/fisiología , Animales , Reactores Biológicos , Perros , Células de Riñón Canino Madin Darby
16.
PLoS One ; 15(12): e0243270, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-965212

RESUMEN

The SARS-CoV-2 (COVID-19) pandemic is a global crisis that threatens our way of life. As of November 18, 2020, SARS-CoV-2 has claimed more than 1,342,709 lives, with a global mortality rate of ~2.4% and a recovery rate of ~69.6%. Understanding the interaction of cellular targets with the SARS-CoV-2 infection is crucial for therapeutic development. Therefore, the aim of this study was to perform a comparative analysis of transcriptomic signatures of infection of SARS-CoV-2 compared to other respiratory viruses (EBOV, H1N1, MERS-CoV, and SARS-CoV), to determine a unique anti-SARS-CoV-2 gene signature. We identified for the first time that molecular pathways for heparin-binding, RAGE, miRNA, and PLA2 inhibitors were associated with SARS-CoV-2 infection. The NRCAM and SAA2 genes, which are involved in severe inflammatory responses, and the FGF1 and FOXO1 genes, which are associated with immune regulation, were found to be associated with the cellular gene response to SARS-CoV-2 infection. Moreover, several cytokines, most significantly IL-8 and IL-6, demonstrated key associations with SARS-CoV-2 infection. Interestingly, the only response gene that was shared among the five viral infections was SERPINB1. The protein-protein interaction (PPI) analysis shed light on genes with high interaction activity that SARS-CoV-2 shares with other viral infections. The findings showed that the genetic pathways associated with rheumatoid arthritis, the AGE-RAGE signaling system, malaria, hepatitis B, and influenza A were of high significance. We found that the virogenomic transcriptome of infection, gene modulation of host antiviral responses, and GO terms of SARS-CoV-2 and EBOV were more similar than to SARS, H1N1, and MERS. This work compares the virogenomic signatures of highly pathogenic viruses and provides valid targets for potential therapy against SARS-CoV-2.


Asunto(s)
COVID-19/genética , SARS-CoV-2/fisiología , Transcriptoma , COVID-19/metabolismo , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/metabolismo , Ebolavirus/fisiología , Perfilación de la Expresión Génica , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/metabolismo , Interacciones Huésped-Patógeno , Humanos , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/genética , Gripe Humana/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Mapas de Interacción de Proteínas , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología
17.
Nature ; 588(7839): 670-675, 2020 12.
Artículo en Inglés | MEDLINE | ID: covidwho-943910

RESUMEN

The distal lung contains terminal bronchioles and alveoli that facilitate gas exchange. Three-dimensional in vitro human distal lung culture systems would strongly facilitate the investigation of pathologies such as interstitial lung disease, cancer and coronavirus disease 2019 (COVID-19) pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we describe the development of a long-term feeder-free, chemically defined culture system for distal lung progenitors as organoids derived from single adult human alveolar epithelial type II (AT2) or KRT5+ basal cells. AT2 organoids were able to differentiate into AT1 cells, and basal cell organoids developed lumens lined with differentiated club and ciliated cells. Single-cell analysis of KRT5+ cells in basal organoids revealed a distinct population of ITGA6+ITGB4+ mitotic cells, whose offspring further segregated into a TNFRSF12Ahi subfraction that comprised about ten per cent of KRT5+ basal cells. This subpopulation formed clusters within terminal bronchioles and exhibited enriched clonogenic organoid growth activity. We created distal lung organoids with apical-out polarity to present ACE2 on the exposed external surface, facilitating infection of AT2 and basal cultures with SARS-CoV-2 and identifying club cells as a target population. This long-term, feeder-free culture of human distal lung organoids, coupled with single-cell analysis, identifies functional heterogeneity among basal cells and establishes a facile in vitro organoid model of human distal lung infections, including COVID-19-associated pneumonia.


Asunto(s)
COVID-19/virología , Pulmón/citología , Modelos Biológicos , Organoides/citología , Organoides/virología , SARS-CoV-2/fisiología , Técnicas de Cultivo de Tejidos , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/virología , COVID-19/metabolismo , COVID-19/patología , Diferenciación Celular , División Celular , Células Clonales/citología , Células Clonales/metabolismo , Células Clonales/virología , Humanos , Técnicas In Vitro , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H1N1 del Virus de la Influenza A/fisiología , Integrina alfa6/análisis , Integrina beta4/análisis , Queratina-5/análisis , Organoides/metabolismo , Neumonía Viral/metabolismo , Neumonía Viral/patología , Neumonía Viral/virología , SARS-CoV-2/crecimiento & desarrollo , Análisis de la Célula Individual , Receptor de TWEAK/análisis
19.
Viruses ; 12(6)2020 06 24.
Artículo en Inglés | MEDLINE | ID: covidwho-620517

RESUMEN

The respiratory Influenza A Viruses (IAVs) and emerging zoonotic viruses such as Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) pose a significant threat to human health. To accelerate our understanding of the host-pathogen response to respiratory viruses, the use of more complex in vitro systems such as normal human bronchial epithelial (NHBE) cell culture models has gained prominence as an alternative to animal models. NHBE cells were differentiated under air-liquid interface (ALI) conditions to form an in vitro pseudostratified epithelium. The responses of well-differentiated (wd) NHBE cells were examined following infection with the 2009 pandemic Influenza A/H1N1pdm09 strain or following challenge with the dsRNA mimic, poly(I:C). At 30 h postinfection with H1N1pdm09, the integrity of the airway epithelium was severely impaired and apical junction complex damage was exhibited by the disassembly of zona occludens-1 (ZO-1) from the cell cytoskeleton. wdNHBE cells produced an innate immune response to IAV-infection with increased transcription of pro- and anti-inflammatory cytokines and chemokines and the antiviral viperin but reduced expression of the mucin-encoding MUC5B, which may impair mucociliary clearance. Poly(I:C) produced similar responses to IAV, with the exception of MUC5B expression which was more than 3-fold higher than for control cells. This study demonstrates that wdNHBE cells are an appropriate ex-vivo model system to investigate the pathogenesis of respiratory viruses.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/virología , Mucosa Respiratoria/citología , Mucosa Respiratoria/virología , Animales , Bronquios/citología , Bronquios/virología , Células Cultivadas , Quimiocinas/metabolismo , Citocinas/metabolismo , Perros , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/epidemiología , Uniones Intercelulares , Células de Riñón Canino Madin Darby , Modelos Biológicos , Mucina 5AC/metabolismo , Pandemias , Cultivo de Virus
20.
Blood Adv ; 4(13): 2967-2978, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: covidwho-625455

RESUMEN

Thrombocytopenia is a common complication of influenza virus infection, and its severity predicts the clinical outcome of critically ill patients. The underlying cause(s) remain incompletely understood. In this study, in patients with an influenza A/H1N1 virus infection, viral load and platelet count correlated inversely during the acute infection phase. We confirmed this finding in a ferret model of influenza virus infection. In these animals, platelet count decreased with the degree of virus pathogenicity varying from 0% in animals infected with the influenza A/H3N2 virus, to 22% in those with the pandemic influenza A/H1N1 virus, up to 62% in animals with a highly pathogenic A/H5N1 virus infection. This thrombocytopenia is associated with virus-containing platelets that circulate in the blood. Uptake of influenza virus particles by platelets requires binding to sialoglycans and results in the removal of sialic acids by the virus neuraminidase, a trigger for hepatic clearance of platelets. We propose the clearance of influenza virus by platelets as a paradigm. These insights clarify the pathophysiology of influenza virus infection and show how severe respiratory infections, including COVID-19, may propagate thrombocytopenia and/or thromboembolic complications.


Asunto(s)
Plaquetas/virología , Virus de la Influenza A/patogenicidad , Gripe Humana/complicaciones , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/metabolismo , Trombocitopenia/etiología , Animales , Plaquetas/metabolismo , Plaquetas/patología , Modelos Animales de Enfermedad , Hurones , Interacciones Huésped-Patógeno , Humanos , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Subtipo H3N2 del Virus de la Influenza A/fisiología , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/fisiología , Virus de la Influenza A/fisiología , Gripe Humana/metabolismo , Gripe Humana/patología , Gripe Humana/virología , Infecciones por Orthomyxoviridae/complicaciones , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Trombocitopenia/metabolismo , Trombocitopenia/patología , Trombocitopenia/virología , Internalización del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA